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Effect of threshold stress processes 
on ductility 
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When a threshold stress process influences the creep behaviour, the mechanical defor- 
mation of the material is not driven by the total applied stress but rather by an effective 
stress. The effect of the operation of such a process on ductility is examined using the 
concept of plastic instability. Also, this effect is compared with that caused by the 
operation of two sequential processes (slower process controls). Based on this comparison, 
it is suggested that a distinction between the operation of a threshold stress process and 
the operation of two sequential processes on the basis of ductility tests may be difficult, 
especially when cavitation occurs at low stresses or when an independent interaction 
exists between a threshold stress process and a low-stress deformation mechanism. 

1. Introduction 
Under conditions of steady-state deformation, the 
creep rate, ~, may generally be represented by an 
expression of the form 

G n 

= B - ~ e x p ( - - Q / R T ) ,  (1) 

where B is a constant, a is the applied stress, n is 
the stress exponent, d is the grain size, s is the 
grain size sensitivity, Q is the apparent activation 
energy, R is the gas constant and T is the absolute 
temperature. Equation 1 is referred to as the creep 
power law and its validity, when expressed in a 
normalized form [1], has been established for a 
wide range of materials. 

Rate controlling mechanisms of creep are 
generally identified by comparing the exper- 
imentally measured values of n, Q, and s with 
those values established for various basic processes. 
In addition, when interaction between two differ- 
ent creep processes is significant over certain 
ranges of experimental conditions, the nature of 
the interaction can be inferred from examining 
the variation in the stress exponent, n, as a func- 
tion of the applied stress, a, and/or the variation 
in the activation energy, Q, as a function of 
the absolute temperature [2]. For instance, a 
sequential interaction between two processes (the 

slower process controls) results in an increase in 
the stress exponent, n, with decreasing stress 
whereas the opposite is true for the case of an 
independent interaction between two processes 
(the faster process controls). While many examples 
are available in the creep literature to illustrate 
the applicability of this simple analysis, recent 
considerations [3, 4] suggest that under certain 
experimental conditions the stress exponent, n, 
and the activation energy for creep, Q, may not 
provide sufficiently good criteria to distinguish 
the difference between sequential processes and 
threshold stress processes; a threshold stress 
process signifies that an effective stress, Oe 
(Oe = a -  ao, where a0 is the stress needed for 
the onset of deformation), rather than the applied 
stress (Equation 1) is responsible for the measured 
strain rate. This difficulty in distinguishing the 
difference between the operation of a threshold 
stress process and the operation of two sequential 
processes on the basis of the stress exponent, n, 
arises basically from the close similarities of 
log ~ -- log a plots (from which n is inferred) for 
the two types of deformation processes. Also, 
when a threshold stress process depends strongly 
on temperature, the operation of such a process 
results in Arrhenius plots of log ~ against l IT  
(from which Q is inferred) similar to those 
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produced by the operation of two sequential 
processes. 

In view of the frequent application of the 
concepts of sequential processes and threshold 
stress processes to the interpretation of low-stress 
creep data and to the development of constitutive 
equations, it seems desirable to examine whether 
the close resemblance between the two types of 
processes is only confined to the stress exponent, 
n, and the activation energy for creep, Q, or may 
extend to include other mechanical parameters. 
Of these mechanical parameters, plastic instability 
appears to be an appropriate choice partly due to 
its relevance to the process of high-temperature 
flow and fracture and partly because of its recent 
utilization to examine the low-stress creep behav- 
iour of some materials [5, 6]. This paper therefore 
examines the effect of the operation of a threshold 
stress process on plastic instability and compares 
this effect with that arising from the operation of 
two sequential processes. 

2. Ana lys is  and discussion 
As a first step in the analysis, it is essential to 
introduce the following two basic equations: 

dA 
- A i  (2 )  

dt 

and 
e = oA, (3) 

where A is the instantaneous area, dA/dt is the 
rate change of the area, and P is the applied load. 
Equation 2 is the continuity equation, 
which incorporates the assumption of constancy 
of volume, and Equation '3 defines the 
applied stress. 

For simple creep power-law behaviour that can 
be represented by Equation 1,it is well documented 
that the rate of change of the area, dA/dt(A), is 
related to the instantaneous area, A, and the stress 
exponent, n, by the following expression [7] : 

(4)  

where C is a constant for constant temperature and 
grain size; according to Equation 1, C = (Bid s) exp 
(--Q/RT). While the approach taken to arrive at 
Equation 4 is rather simple, the eXpression may 
serve as a starting point in the present analysis. 
A simple form of plot that represents Equation 4 
is shown in Fig. 1, where log IdA/dtl is plotted 
against logA; because of the selection of a double 
logarithmic scale, this plot is different from that 
reported elsewhere [7] for Equation 4 and pro- 
duces a straight line having a slope of 1 - -n .  The 
straight line shown in Fig. 2 has two parameters, 
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Figure 1 The log of the rate of change of 
area, dA/dt, against the log of the instan- 
taneous area, A, for (a) a constant value of 
the applied load, P, and (b) a constant value 
of the stress exponent, n. 
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P and n, and accordingly offers two relationships: 
(a) For a constant value of  P, a family of  non- 
parallel lines is produced with changing the 
stress exponent (Fig. 2a), and (b) for a constant 
value of  n, a family of  parallel lines is obtained as 
P varies (Fig. 2b). While the first plot (Fig. 2a) 
indicates that the rate growth of  necks is drastically 
accelerated as the stress exponent,  n, increases, the 
second plot signifies that the load level has no 
effect on the shape states of  a neck which develop 
in a tensile specimen prior to fracture and that 
only the time required to reach a specific state is 
shortened by increasing P, i.e., in the absence of  
cavitation, no variation in ductility occurs with 
changing the load level. The situations for 
sequential processes and threshold stress process 
are now examined in the light of  Equation 1 and 
Fig. 1. 

2 . 1 .  S e q u e n t i a l  p r o c e s s e s  

Deformation processes may operate either indepen- 
dently (so that the fastest controls) or sequentially 
(so that the slowest controls). For two processes, 
Processes a and b, operating sequentially in such a 
way that each process participates for a different 
time through any period, t, and contributes an 

identical strain to preserve the integrity of  the 
material, the total creep rate, ~, is given by [2] 

~ a ~ b  - ~a + ~ .  (5) 

To apply Equation 4 to the sequential inter- 
action and also to provide a comparison, later on, 
with the behaviour of  a threshold stress process, 
we shall assume that the two sequential processes 
are represented by the following constitutive 
equations: 

ea = Ba ~  exp (-- Qa/RT) (6a) 
and 

~'b = Bb Onb exp (-- Qb/RT) . (6b) 

The values of  Ba, na, Qa, Bb, rib, and Qb have 
been selected as: 9 . 4 •  -3 , 2, 8 4 k J  tool -1 
l0 s, 5 and 209kJmo1-1,  respectively. Consider- 
ation of  Equation 5 along with Equation 6 shows 
that Process a, having a stress exponent of  2, 
controls the creep behaviour of  the material at 
high stresses and that Process b, having a stress 
exponent of 5, is the dominant process at low 
stresses. 

By using Equation 6 to express ea and eb in 
Equation 5, replacing ~ in Equation 2 by ~ of 
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Figure 2 The log of the rate of 
change of area, dA/dt, against 
the log of the instantaneous area, 
A, for (a) a power-law threshold 
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sequential processes. 
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Equation 5, and writing a = P/A (Equation 3), the 
relationship between dA/dt and A can be given 
by the form: 

where 

and 

kakb Pnb 

kaAnt71 4- kbAna-lp L , (7) 

ka = Ba exp (-- Qa/RT) , 

k b = B b exp (-- Qb/RT) 

L = n b --  n a. 

The variation in log IdA/dtl as a function of  
logA for sequential Processes a and b is plotted 
in Fig. 2 for six different values of  P and for a 
given range of  A*. It is clear that the plot of  
Fig. 2 results in a series of  straight lines for the 
range selected for A,  with each straight line having 
a slope of  1 - - n ,  and that these lines combine the 
features of  both plots of  Fig. 1. For high values of  
P, i.e., P > P6, Process a is dominant and the lines 
are essentially parallel with a slope o f - -  1, and for 
low values of  P, P < P1, Process b is dominant and 
the lines exhibit a slope o f -  4. By contrast, lines 
obtained for intermediate loads are non-paralM 
and the slope changes continuously from a limiting 
value of  -- 1 to a limiting value o f - -  4. This change 
in slope from -- 1 to --  4 with decreasing P indi- 
cates, according to Fig. 1, that inhomogeneous 
deformation becomes increasingly localized as the 
creep behaviour changes from that typical of  
Process a to that typical of  Process b. 

2 . 2 .  A t h r e s h o l d  s tress  p rocess  
Let us consider a hypothetical situation in which 
modified power-law creep, associated with a 

presence of  a threshold stress that decreased with 
increasing temperature. In addition, low-stress 
creep data of  several systems, as examined by 
Burton [9], suggest the presence of  a threshold 
stress that depends strongly on temperature during 
diffusion creep (~ cc a - -  ao). The values of  Cts, n, 
Q, Co, and Q0 have been selected as 9.4 • 10 -3, 2, 
84, 0.01 and 33kJmo1-1 ,  respectively. This 
choice of  Q, Q0, Cts and Co shows that the creep 
rates due to the threshold stress process, when 
plotted against the applied stress on a logarithmic 
scale in Fig. 3, are experimentally indistinguishable 
from those ascribable to the sequential summation 
of  Equations 5 and 6 over the same experimental 
stress range and for four different temperatures. 

When Equation 8, under constant temperature 
condition, is combined with Equations 2 and 3, 
the variation in IdA/dr[ as a function of A for a 
threshold stress process can be expressed as 

[-~[ = c2pn(1--~ ' -~) /A '~-', (9) 
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threshold stress, controls the creep behaviour . ~  
and obeys the following empirical equation: 

= Cts(a -- a0)" exp (-- Q/R T), 
with (8) 

ao = Co exp (Qo/RT), 

where Cts and Co are constants, and Qo is an acti- 
vation energy associated with Oo. Although there 
is no theoretical justification for a strong tempera- 
ture dependence of  Oo, as assumed by Equation 8, 
recent experimental evidence indicates that this 
situation is not unrealistic. For example, exper- 
imental measurements made during superplastic 
flow of  a duplex stainless steel [8] have shown the 
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Figure 3 Log of the strain rate against log of the applied 
stress at four temperatures for a power-law threshold 
stress process and two sequential processes. 

*The range of A is selected so that the different areas of the tensile specimen exh~it almost the same value of n during 
deformation. 
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where C2 = Cts exp (-- Q/RT). Using the selected 
values of n, Q, Qo, Cts and Co, log IdA/dtl is plotted 
against log A in Fig. 2a for six different load levels 
which are comparable with those used in plotting 
the sequential situation (Fig. 2b). An examination 
of this plot suggests two points. Firstly, for high 
values of P (P > P6), the slope of each correspond- 
ing line, like that due to the sequential summation, 
is -- 1 and Oo has no effect on IdA/dtl. Secondly, 
decreasing the value of P causes the slope of the 
line to increase, a trend which is also similar to 
that exhibited by the sequential summation. The 
similarities between the plot of log IdA/d0 against 
log A for a threshold stress process and that for 
the sequential summation suggest that a threshold 
stress process, like the sequential summation, 
would lead to a decrease in ductility with decreas- 
ing the applied load. This suggestion is examined 
in the next section. 

2.3. Ductility 
A number of investigators [10-16] have devel- 
oped equations that correlate the elongation at 
fracture, el, with the stress exponent, n, using two 
different types of treatment. In the first type of 
treatment [ I0 ,11] ,  the ductility equation was 
derived by using a force balance between the 
homogeneous and imperfect regions of the speci- 
men and assuming that the strain in the imperfect 
region approaches infinity as the strain in the 
homogeneous region reaches the fracture strain; 
whereas in the second type of treatment [11-16],  
the original Hart analysis [17] for the rate of 
development of an inhomogeneity in the cross- 
sectional area of a tensile specimen was extended* 
to predict ductility equations. Regardless of the 
type of treatment chosen, the development of 
ductility expressions has required the use of con- 
stitutive equations that can predict or describe the 
mechanical behaviour of the material. Three 
commonly used equations for this purpose are: 
d l n o = m d l n d + 3 ' d e ,  a = k e N ~  m and the 
reduced steady-state form a = k~ m, where m is 
the strain-rate sensitivity (m-- 1/n under steady- 
state conditions), 3' is the work hardening coef- 
ficient and N = 3'/e. Use of these equations, how- 
ever, leads to analytical solutions only when 
simplifying assumptions are incorporated into the 
analysis. The constitutive equations under consider- 

ation in the present work (Equations 5, 6 and 8) 
are clearly different from those commonly used 
and, because of this difference, difficulties may be 
encountered in the analysis predicting ductility 
if a general solution is attempted. Accordingly, in 
conducting the present investigation, it seems 
desirable, for the purpose of avoiding analytical 
complications, to adopt a linealized approach, 
along the lines suggested by Hart [17], which can 
predict to a first approximation the effects of the 
newly considered constitutive equations on the 
fracture strain of a tensile specimen. 

We shall consider a tensile test specimen that is 
deforming under constant load, P, during steady- 
state conditions (strain-hardening is absent). The 
specimen has initially a uniform cross-sectional 
area A (homogeneous region) except for a short 
length in which the cross-sectional area differs by 
a small quantity 6A (imperfect region). Also, it is 
assumed that the specimen is deforming in uniaxial 
tension (triaxially due to necking is ignored). After 
application of load, P, for a time interval, the cross- 
sectional areas in the homogeneous and imperfect 
regions are A and (A + ~A), respectively. With 
these descriptions and assumptions, which are 
similar to those included in the analysis of Hart 
[17], the dependence of ~A on 5Ao, A, and A0 
can be analysed for the two sequential processes 
given by Equations 5 and 6 and the threshold 
stress process represented by Equation 8. 

As a first step, we apply Equations 2 and 3 to 
both the homogeneous and imperfect regions of 
the specimen. After neglecting products of small 
quantities, we obtain the following two relations: 

d 5A 
- (A6d + ~ iA)  (10) 

dt 
and 

~a ~A 
a A (11) 

Further progress beyond these two equations 
requires consideration of the appropriate con- 
stitutive equations. 

2.3. 1. Sequential processes 
The total creep rate, ~, arising from two processes, 
a and b, acting sequentially, and satisfying con- 
ditions state in Section 2.1, is given by Equation 
5 which can, using the relationships ea = ka aria 

*The assumption that the strain in the inhomogeneity is infinite at fracture is also incorporated into the analysis of one 
investigation [ 13 ]. 
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[k = B a exp (-Qa/RT)] and eb = kba~[kb = 
B b exp (-- Qb/RT)] ,  be written in the form: 

kakb ona + nb 
= for T = constant. (12) 

k a o na + k b (7 nb 

If this equation is applied to both the homogeneous 
and imperfect regions, one obtains, after some 
simplifications, the approximate form: 

~--~E ~--- ( ~akb17nb~ glbkaon~ ~---~ (13) 
e \ kat7 na+ kbt7 nb ] 17 " 

Combining Equations 10, 11 and 13, rearranging, 
and using Equation 3 (P = 17A), we find 

nakb PL LHbkaALI  dA d 6A 1 
6A - kaAL + kbeL ]--~ , (14) 

where L = n b --na. Under the condition of con- 
stant load, Equation 14 can be integrated from 
Ao to A to give 

(SA _ [A ~l-na(kaAL 0 + kbPL~ 
5A0 ~oo] ~ k - ~ + k - ~ ] "  (15) 

An examination of Equation 15 reveals two 
limits which are consistent with both the original 
Hart analysis [17] and the characteristics of the 
sequential summation [2]. First, for very high 
values of P, the terms ka AL and ka AL are very small 
compared with kb PL and as a result Equation 15 

reduces to 
,A " 
~Ao - (16) 

Equation 16 is the form obtained from Hart's 
analysis [17] under the condition of the operation 
of Process a. Second, for very small values of P, 
kaALo and ka AL become dominant terms and 
Equation 15 can be written as 

. ( : )  ,, 
~Ao 

= / A l l - r i b  
~Aoo) " ( 1 7 )  

Again this form represents the result of Hart's 
analysis [17] when Process b controls the plastic 
flow of the materiall 

Multiplying both sides of Equation 15 by A o/A 
and replacing Ao/A by 1 + e, where e is the average 
engineering strain, the equation 
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(6A/A) _ (1 + e)"" [ kaAL~ + kbPL ] 
(~Ao/Ao--) [ k.(A-~l T-e~-+--kbP L 

. . I  

(IS) 

is obtained. It is assumed that fracture occurs 
when (6A/A)/(6Ao/Ao) approaches a critical value, 
Ke [13]. With this condition, Equation 18 can be 
expressed as 

K e = (1 + el) n" [ kaAL + kbeL [ 
ka(A~l-+-ef)-~-kbpI:j " 

(19) 
It is recognized that Kc could be a function of 
many variables including stress exponent, shape 
and size of samples, and other substructural 
features, but a recent investigation [13] shows 
that as a first approximation K c is a function of 
the stress exponent, n, and exhibits two bounds: 
K c=200  for n = 2  and K c = 4  for n = 1 0 0 .  
However, since the present analysis is intended 
to provide a comparison between two types 
of behaviour (sequential and threshold stress 
processes), it seems reasonable to use an average 
value of 100 for Kr Using this value of Kc and 
taking A0 = 1, Equation 19 is solved graphically 
for different values of P (for the same range used 
in Fig. 2). The results of the solution of Equation 
19 are shown in Fig. 4b, where the elongation to 
fracture, el, is plotted against P on a logarithmic 
scale. As expected, ef decreases with P from an 
upper limit determined by Process a (n = 2) to a 
lower limit determined by Process b (n = 5). 

2.3.2. A threshold stress process 
Using the constitutive law of the threshold stress 
process given in Equation 8, the following steps 
similar to those carried out for the sequential 
summation, the dependence of 8A on 6Ao IA and 
Ao can be expressed as 

8A - I--A~o/P 7 "  (20) 

Upon integration from A0 to A (P is constant and 
P/A > %),  it is possible to write the result in the 
form of Equation 15 as 

5A ( A )I-n( Aoo--P t n (21) 

5Ao - Too ~Aooo -- e ] " 

When P >> Ao Oo, Equation 21 reduces to the form 
obtained from Hart's analysis [17]. Multiplying 
both sides of Equation 21 by Ao/A, and setting 



(SA/A)/(SAo/A) -->Ke as e ~ el, the expression of 
the elongation to fracture under the condition of 
the operation of a threshold stress process can be 
given by 

K e =  { (l+e')[(cr~176 aoAo - - r  J /  (22) 

Equation 22 is solved graphically to obtain ef as a 
function of P using the same conditions chosen for 
the sequential summation (range of P, temperature, 
Ao, Ke, etc.); Oo is calculated from Equation 8. 

The values of e~ estimated from Equation 22 
are plotted against P on a logarithmic scale in 
Fig. 4a. A comparison between the trend shown 
by the threshold stress process (Fig. 4a) and that 
exhibited by the sequential summation (Fig. 4b) 
reveals two similarities and one difference. Both 
trends are similar with respect to (a) the asymptotic 
value of ef at the highest value of P, and (b) the 
values of ef at intermediate values of P (the lowest 
value is indicated by an arrow) which, in fact, rep-  
resent the transition domain of the two sequential 
processes. These similarities, in turn, indicate that 
both types of processes would lead to a decrease 
in ductility with decreasing loads. In contrast, the 
difference between both trends (ef against P) is 
manifested by the observation that the threshold 
stress process represented by Equation 8, unlike 
the sequential summation, does not result in an 
asymptotic value of ef at very low values of P; this 
is expected since the value of the stress exponent 
inferred from Equation 8 increases continuously 
with (r. While this difference in trend can be used 
to distinguish between the two types of defor- 
mation _processes, several complications, arising 
from factors which are not considered in the 
solution of Equations 14 and 20, may interfere 
and mask the trend. Among these factors are the  

possibility of nucleation and growth of cavities 
under the conditions of low stresses a n d  long 
testing time and/or  the possibility of intervention 
by an independent mechanism a t very low stresses. 
The nucleation and growth of cavities; when 
combined with the operation of two sequential 
processes, could lead to a continuous decrease in 
ductility with decreasing the applied load, a 
variation which simulates that arising from a 
threshold stress process as shown by Fig. 4a. On 
the other hand, the possibility of an interaction 
between a threshold stress process and a second, 
independent low-stress mechanism could result 
in an enhancement of ductility at low stresses. 
This enhancement, in turn, could produce a trend 
which is similar to that produced by the operation 
of two sequential processes. 

Finally, there is one comment concerning the 
present analysis and the assumptions involved. In 
developing the ductility expressions(Equations 19 
and 22), i~t is implicitly assumed that the value of 
the stress exponent is the same in both homo- 
geneous and imperfect regions of the tensile speci- 
men. This assumption seems unrealistic for very 
large strain increments, since the operation of 
either sequential processes or threshold stress 
processes would result in a variation in the stress 
exponent, n, with position along a tensile speci- 
men. However, the major part of the elongation 
to fracture is obtained when the neck is still very 
small, implying that the difference between the 
value of n in the homogeneous region and that in 
the imperfect region during most of the ductility 
test may be so small that the assumption of con- 
stancy of -n  may not be seriously violated. In 
addition, the fact that several ductility expressions 
[10-16] tend to predict accurately the elongation 
to fracture [18] even in the presence of strain- 
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hardening (n is a function of strain), and even 
when a variation in the size of the imperfection is 
considered, suggests that the assumption of 
constancy of n along the specimen as well as the 
assumptions of a uniaxial stress state and homo- 
geneous deformation may not strongly affect the 
prediction of ductility in the large strain limit. 

3. Conclusions 
It is shown that the correlation between the 
stress exponent and ductility may not provide a 
conclusive distinction between the operation of a 
threshold stress process and the operation of two 
sequential processes because of the similarity of 
ductility plots for both cases. Also, the occurrence 
of extensive cavitation at low stress and/or the 
presence of other independent low-stress mech- 
anisms could contribute to the difficulty of such a 
distinction. 
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